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Abstract—Existing approaches for low-rank approximation ei-
ther need a rank prior or ignore the spatial smooth characteristic
of a color image. To overcome these drawbacks, we propose a
total variation regularized low-rank tensor approximation model
for color image denoising. The model integrates the strong low-
rank prior into a tensor-SVD framework, and introduces the
hyper total variation to model the spatial smooth structure of
images. Using the alternating direction method of multipliers,
we propose a simple algorithm to solve our model. Extensive
results on simulated and real noisy color images demonstrate
the better performance of the proposed method against state-of-
the-art denoising methods.

Index Terms—Low-rank tensor approximation, tensor-singular
value decomposition, color image denoising.

I. INTRODUCTION

Exploiting low-dimensional structure from high-

dimensional data, namely, low-rank matrix/tensor

approximation [1], [2], has received increasing attention.

However, during the image acquisition and transmission

procedures, images are inevitably corrupted by noise. This

poses great challenges to further applications, such as image

inpainting, image classification and objection detection.

Therefore, image denoising becomes a fundamental problem.

Due to the presence of noise, the observed images may

not exhibit low-rank property. The core of image denoising

task in recent efforts [1]–[7] is how to exactly build a proper

low-rank regularizer to model the global structure of the

underlying image. As the important work for low-rank matrix

approximation (LRMA) [1], Candès et al. proposed a robust

principal component analysis (RPCA) model. It measures the

error (including outliers, gross corruptions) using l1-norm,

leading to the following convex formulation:

min
L,S

‖L‖∗ + λ‖S‖1 s.t. L+ S = Y, (1)

where λ is a non-negative regulairzing parameter. ‖L‖∗,
known as the nuclear norm, is defined as the sum of singular

values of L. Then, the noisy observation Y is decomposed

into a low-rank term L and a sparse component S. RPCA

can be regarded as a robust version of PCA which applies the

l2-norm to measure the error. However, because l2-norm is

optimal to suppress additive Gaussian noise, PCA is sensitive

to impulse noise. Although the model in (1) can obtain the

global solution under the theoretical guarantee, many works

have proven that non-convex low-rank approximations could

achieve further boosting performance for image recovery. For

instance, Gu et al. [4] adopted the weighted strategy to the

nuclear norm, namely the weighted nuclear norm, and found

that it is closer to the original rank function than the nuclear

norm. This is mainly due to the striking fact that, no matter

how big a singular value is, the contribution of this one for

the rank function should be 1. Nonetheless, a big challenge is

how to set a proper weight for each singular value. Different

from the weighted idea, a new non-convex LRMA using the

Laplace function was proposed in [5] with promising empirical

performance for image denoising [6].

To handle the tensor data, these above methods must unfold

the tensor data along mode-3 to produce the matrix Y . This

is insufficient and may cause loss of useful information along

other two dimensions [2]. Thus, these approaches are able

to handle only the matrix data. Recent advances [2], [8],

[9] have investigated that tensor-based methods have great

potential in image denoising task. However, the tensor rank

is difficult to define and implement in real applications. Dif-

ferent tensor decompositions have different tensor ranks. For

example, CANDECOMP/PARAFAC (CP) [10] decomposes a

tensor into a number of rank-1 factors. Then the CP rank is

defined as the smallest number of rank-1 factors. As a result,

it may suffer from high computation cost and its best low-

rank approximation is unknown because it is intractable to

compute the CP rank [2]. Another way to reveal the algebraic

structure is Tucker decomposition [12] decomposing a tensor

data into one small core tensor and a set of matrices [2], [11].

However, the ranks along all modes must be predefined by

human before running the algorithm. This may be difficult

in practice. Most of the aforementioned methods for image

denoising are based on the low-rank prior that models the high

correlation between channels or patches, without consideration

of the local piecewise smooth structure of an image.

To overcome these drawbacks, in this paper we propose the

Total Variation-regularized Low-rank Tensor approximation

(TVLT) model. The total variation is a perfect regularizer for

preserving edge information and the local piecewise smooth-

ness. The proposed TVLT is a unified framework that takes

two priors into consideration for color image denoising: global

low-rank property and local piecewise smooth characteristic.

Specifically, we first utilize the tensor nuclear norm based

on the recently proposed tensor-SVD framework [10], [11] to

model the low-rank prior. Then, we leverage the tensor RPCA

to analyze the color image with automatical determination of
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the tensor rank. Moreover, the noisy color image is treated as

a tensor data to make fully advantage of correlations along

different channels. It is decomposed into a low tubal rank

tensor term, a sparse component, and a tensor data. Fur-

thermore, we propose an easy-to-implement algorithm based

on the alternating direction method of multipliers (ADMM).

Lastly, extensive experiments on simulated and real noisy color

images validate the effectiveness of our method qualitatively

and quantitatively.

II. PROPOSED TVLT MODEL

This section first introduces the TVLT model that integrates

the tensor tubal norm, l1-norm, and TV regularization in a

unified framework, and then proposes an algorithm to use

ADMM to solve the TVLT model.

A. TVLT model

For an observed noisy color image Y of size Rm×n×3, let L
be the desired unknown color image to be recovered. Then, the

denoising task is to estimate L from Y satisfying the following

linear superimposition:

L+ S + G = Y, (2)

where S, G correspond to impulse noise, and Gaussian noise,

respectively.

Here, we consider two priors of the color images: global

low-rank property and local piecewise smooth characteristic,

with their corresponding regularizers into model (2), and

obtain our final model:

min
L,S,G

α‖L‖� + μ‖L‖HTV + λ‖S‖1 + γ‖G‖2F
s.t. L+ S + G = Y,

(3)

where α, μ, λ, γ are non-negative parameters. ‖L‖� repre-

sents the tensor nuclear norm, which is defined as the sum

of singular values of all the frontal slices of L̂1. While the

second term is the hyper total variation (HTV), defined as:

‖L‖HTV =
3∑

t=1

‖L(t)‖TV , (4)

where L(t), (t = 1, 2, 3) is the t-th channel of the color image

L. For a given matrix L, the traditional TV norm is defined

as ‖L‖TV = ‖�xL‖1+ ‖�yL‖1, where operators �x and �y

are the finite-difference operators along the x and y dimen-

sions, respectively. Compared with matrix image denoising

approaches, such as RPCA in (1), the main advantage of our

model is that it can employ not only the high correlation along

three channels of color image but also the spatial information.

Furthermore, it also explores the smooth structure, i.e., spatial

continuity by the HTV norm in a tensor framework. Thus, our

method can recover a more accurate color image.

1where L̂ is obtained by performing the fast Fourier transformation (FFT)
along the tube fibers of L. For more details about tensor nuclear norm may
be found in [2], [10], [11].

B. Solution procedures of TVLT
Note that, in the objective function, the first two terms

‖L‖� and ‖L‖HTV are coupled, because they share the same

variable L. An intuitive explanation is that we impose both

global low-rank and local piecewise smooth priors to the

recovered color image. Then, we employ the variable splitting

technique [13] to solve our model (3). By introducing the

auxiliary variable Z , our proposed TVLT model (3) can be

reformulated as the following problem:

min
L,Z,S,G

α‖L‖� + μ‖Z‖HTV + λ‖S‖1 + γ‖G‖2F
s.t. L+ S + G = Y, L = Z.

(5)

Due to the separable property of objective function in model

(5) w.r.t. the four variables L,Z,S,G, we consider to solve

the model (5) under the ADMM framework. The augmented

Lagrangian function is given by:
Lρ(L,Z,S,G;W, E) = α‖L‖� + μ‖Z‖HTV + λ‖S‖1+

γ‖G‖2F +
ρ

2
(‖L+ S + G − Y + W

ρ
‖2F + ‖L − Z +

E
ρ
‖2F ),

(6)
where W, E are Lagrange multipliers associated with con-

straints L + S + G = Y and L = Z , respectively. ρ is the

penalty parameter.
With simple manipulations, we have the following iterative

scheme to solve the TVLT model using the general ADMM

framework:
1) Update L: Restoration: Fixing other variables except L

in (6), we can obtain the following sub-problem:
Lk+1 = argmin

L
Lρk

(L,Zk,Sk,Gk;Wk, Ek)

= argmin
L

α

ρk
‖L‖� +

1

2
‖L − Dk‖2F ,

(7)

where Dk = ρk(Y+Zk−Sk−Gk)−(Wk+Ek)
2ρk

. By the equation

‖L‖� = ‖bdiag(L̂)‖∗2, (7) can be transformed into the

Fourier domain. It is equivalent to the following formula:

L̂k+1 = argmin
L̂

α

ρk
‖bdiag(L̂)‖∗ +

1

2
‖L̂ − L̂k‖2F ; (8)

The sub-problem (8) can be separated into 3 independent

minimization problems where the t-th problem is

L̂(t)
k+1 = argmin

L̂(t)

α

ρk
‖L̂(t)‖∗ +

1

2
‖L̂(t) − D̂(t)

k ‖2F

= Γα/ρk
(D̂(t)

k ) (9)

for t = 1, 2, 3. Γρ(X) is the matrix singular value thresholding

operator [15]: Γρ(X) := Udiag(σ̄)VT , X = Udiag(σ)VT

is the SVD of matrix X and σ̄ = max{σ − ρ, 0}. Due to

the independence of the sub-problems, problem (8) can be

efficiently computed in parallel.
2) Update Z: Spatial smoothness preservation: Fixing

other variables except Z in (6), we can obtain the following

sub-problem:
Zk+1 = argmin

Z
Lρk

(Lk+1,Z,Sk,Gk;Wk, Ek)

= argmin
Z

μ

ρk
‖Z‖HTV +

1

2
‖Z − Tk‖2F ,

(10)

2Please see more details about operator bdiag in [2], [10], [11].
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(a) Original image (b) Noisy image (c) SSTV (d) IALM (e) WSNN (f) TRPCA (g) TVLT

Fig. 1. Denoised results on BSD with 0.1 of impulse noise. Columns from left to right: (a) Original image, (b) Noisy image, the denoised image obtained
by (c) SSTV [14], (d) IALM [3], (e) WSNN [9], (f) TRPCA [2], (g) TVLT. The figure is viewed better in zoomed PDF.

where Tk = Lk+1 + Ek/ρk. The sub-problem (10) can

be split into 3 independent and smaller 2-D total variation

regularization problem

Z(t)
k+1 = argmin

Z(t)

μ

ρk
‖Z(t)‖TV +

1

2
‖Z(t) − T (t)

k ‖2F , (11)

which can be efficiently solved by a fast gradient-based

method [16].
3) Update S: Impulse noise removal: Fixing other

variables except S in (6), we can obtain the following sub-

problem:
Sk+1 = argmin

S
Lρk

(Lk+1,Zk+1,S,Gk;Wk, Ek)

= argmin
S

λ

ρk
‖S‖1 +

1

2
‖S −Mk‖2F ,

(12)

where Mk = Y−Lk+1−Gk−Wk/ρk. Then the closed-form

solution to (12) can be obtained by resorting to the element-

wise shrinkage operator, that is,

Sk+1 = �λ/ρk
(Mk), (13)

and �ρ(x) := sign(x)max{|x| − ρ, 0}.
4) Update G: Gaussian noise removal: Fixing other vari-

ables except G in (6), we can obtain the following sub-

problem:

Gk+1 = argmin
G

Lρk
(Lk+1,Zk+1,Sk+1,G;Wk, Ek)

= argmin
G

λ‖G‖2F +
ρk
2
‖G − Nk‖2F ,

(14)

where Nk = Y − Lk+1 − Sk+1 −Wk/ρk. This is a standard

least squares regression problem with closed-form solution:

Gk+1 = (2 ∗ γ + ρk)
−1(ρkNk). (15)

5) Update W, E , ρ: Lagrangian multipliers and penalty
parameter:

Wk+1 =Wk + ρk(Lk+1 + Sk+1 + Gk+1 − Y); (16)

Ek+1 = Ek + ρk(Lk+1 −Zk+1); (17)

ρk+1 = min{β ∗ ρk, ρmax}. (18)
It is worth noting that we select β > 1 to further facilitate

the convergence speed.

III. EXPERIMENTAL RESULTS

In this section, we conduct experiments on simulated and

real noisy color images to show the performance of our TVLT

model. All experiments are run in MATLAB R2012a on a

64-bit personal computer with a E5-2609 1.90GHz CPU and

16GB memory.

A. Simulated noisy color image experiment

Compared methods: To validate the performance of our

proposed TVLT model, several recent state-of-the-art methods

are utilized as baseline methods for color image denoising.

They include LRMA based method: IALM [3]; low-rank

tensor approximation based methods: TRPCA [2], WSNN [8],

[9]; and total variation based method: spatial-spectral total

variation (SSTV) [14]. For the IALM method, we applied

IALM to each channel of the noisy color image. The parame-

ters α, μ, λ, γ of TVLT are set 0.1, 0.005, 1/
√
3 ∗ 481, 0.87

for all simulated situations, respectively.

Quantitative assessment: Except the visual comparison,

we also select four commonly quantitative quality indexes,

including PSNR, SSIM, FSIM, ERGAS [17] to measure the

reconstruction accuracies. In general, an image is closer to

the ground truth if it has a higher value of PSNR, SSIM,

and FSIM, or lower ERGAS value. We use the Berkeley

Segmentation dataset (BSD)3, including 300 color images of

size 321× 481× 3. We randomly select 60 images from BSD

for this test and each of them is added with different ratios

of the salt and pepper noise. The ratios are set to 0.1, 0.2,

respectively. 8 examples of selected images are shown in the

first row of Table I.

The denoised results are shown in Figs. 1, 2, and Table I.

The best results of each quality index are highlighted in bold.

The PSNR, SSIM and FSIM values of all selected images

3https://www2.eecs.berkeley.edu/Research/Projects/CS/vision/bsds/
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TABLE I
QUANTITATIVE COMPARISON ON 8 BSD COLOR IMAGES WITH 0.1/0.2 OF IMPULSE NOISE.

Methods Indexes

Noisy

PSNR 14.39/11.42 16.20/13.18 17.27/14.25 14.80/11.83 14.43/11.42 14.80/12.37 14.89/11.88 14.74/11.74

SSIM 0.28/0.147 0.296/0.168 0.256/0.146 0.264/0.137 0.19/0.096 0.282/0.149 0.224/0.107 0.268/0.145

FSIM 0.736/0.589 0.734/0.589 0.682/0.532 0.716/0.568 0.643/0.48 0.74/0.606 0.699/0.558 0.706/0.545

ERGAS 554.6/780.76 369.24/522.92 329.95/467.28 509.02/716.73 590.79/835.22 385/543.62 522.51/738.18 464.92/656.79

SSTV [14]

PSNR 23.2/17.74 25.09/19.64 25.75/20 23.69/18.75 23.28/17.41 23.69/18.76 23.71/18.13 23.41/18.49

SSIM 0.76/0.463 0.751/0.462 0.704/0.379 0.742/0.457 0.683/0.335 0.766/0.463 0.712/0.388 0.733/0.452

FSIM 0.936/0.834 0.928/0.824 0.894/0.761 0.908/0.811 0.884/0.732 0.933/0.83 0.905/0.785 0.906/0.793

ERGAS 200.68/376.07 132.8/248.44 124.37/240.99 180.75/319.28 213.01/418.31 135.85/260.64 188.84/359.15 174.85/302.25

IALM [3]

PSNR 24.51/23.31 25.65/24.7 24.52/23.88 25.35/24.04 24.18/22.96 25.35/24.41 26.9/25.75 24.93/24.03

SSIM 0.833/0.757 0.843/0.796 0.822/0.791 0.822/0.754 0.883/0.842 0.783/0.718 0.816/0.749 0.803/0.744

FSIM 0.886/0.858 0.876/0.855 0.828/0.807 0.881/0.853 0.896/0.875 0.861/0.836 0.864/0.84 0.875/0.851

ERGAS 171.93/197.19 124.33/138.76 143.35/154.29 152.8/177.06 193.97/223.49 120.51/135.94 130.43/148.77 142.85/158.41

WSNN [9]

PSNR 27.24/25.8 27.92/26.79 26.43/25.44 28.02/26.51 26.84/25.45 28.02/26.59 29.28/27.79 26.9/25.85

SSIM 0.92/0.868 0.912/0.875 0.888/0.854 0.904/0.849 0.935/0.902 0.893/0.837 0.902/0.844 0.883/0.832

FSIM 0.938/0.913 0.923/0.902 0.882/0.855 0.929/0.903 0.931/0.912 0.919/0.892 0.917/0.889 0.918/0.894

ERGAS 125.38/147.76 95.79/109.15 115.15/129.06 110.87/131.35 142.46/167.25 89.98/105.77 99.14/117.64 113.92/128.55

TRPCA [2]

PSNR 29.43/27.5 29.84/28.27 28.78/27.31 29.18/27.32 28.75/27.31 29.18/28.68 30.82/28.94 28.27/26.84

SSIM 0.95/0.907 0.946/0.912 0.932/0.899 0.925/0.868 0.953/0.924 0.945/0.9 0.931/0.878 0.913/0.863

FSIM 0.962/0.939 0.953/0.932 0.928/0.902 0.945/0.918 0.949/0.93 0.958/0.932 0.942/0.914 0.939/0.913

ERGAS 97.22/121.38 76.97/92.19 88.13/104.25 95.79/118.35 113.88/134.37 66.18/83.18 83.1/103.29 97.23/114.74

TVLT

PSNR 32.79/29.92 32.63/29.84 32.89/30.3 32.79/30.18 36.39/33.35 32.79/29.40 33.45/30.98 31.76/29.37
SSIM 0.955/0.917 0.945/0.904 0.96/0.934 0.938/0.896 0.954/0.936 0.912/0.864 0.936/0.893 0.927/0.886
FSIM 0.97/0.951 0.959/0.935 0.962/0.943 0.967/0.947 0.971/0.961 0.96/0.936 0.96/0.939 0.958/0.939

ERGAS 66.35/92.28 55.7/76.83 54.66/73.61 63.57/85.67 47.14/66.77 55.63/76.59 61.37/81.52 65.15/85.82

(a) Original image (b) Noisy image (c) SSTV (d) IALM (e) WSNN (f) TRPCA (g) TVLT

Fig. 2. Denoised results on BSD with 0.2 of impulse noise. Columns from left to right: (a) Original image, (b) Noisy image, the denoising image obtained
by (c) SSTV [14], (d) IALM [3], (e) WSNN [9], (f) TRPCA [2], (g) TVLT.

are shown in Fig. 3. As can be seen, for almost all images,

TVLT has higher PSNR, SSIM, FSIM and lower ERGAS

values and achieves better performance than other competing

methods. This is mainly due to the fact that TVLT exploits

the global spatial and spectral relationships under the tensor-

SVD framework, and the local spatial structure by the total

variation regularization. Specially, all other low-rank based

methods suffer from the details loss and SSTV cannot fully

remove the impulse noise.

B. Real noisy color image experiment

In this subsection, we aim to test the Gaussian noise removal

on a real noisy color image: Dog4, which is mainly contami-

nated by Gaussian noise. Our TVLT is compared with a basic

method: BM3D [19], one blind image denoising method: NC

[18], and SSTV [14]. Since there is no ground truth of the real

noisy image, the four quantitative indexes cannot be computed.

As shown in Fig. 4, one can see that TVLT can reconstruct

more details while other methods either partially remove noise

or oversmooth the results.

4http://www.ipol.im/pub/art/2015/125/
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Fig. 3. Comparison of PSNR, SSIM, and FSIM values of different methods for color image denoising on 60 BSD images. (a) PSNR values, (b) SSIM values,
and (c) FSIM value. The figure is viewed better in zoomed PDF.

(a) Noisy Dog (b) BM3D (c) SSTV (d) NC (e) TVLT

Fig. 4. Denoised results of a real noisy color image. Columns from left to
right: (a) Noisy image, and the denoised image obtained by (b) BM3D [19],
(c) SSTV [14], (d) NC [18], (e) TVLT. The figure is viewed better in zoomed
PDF.

IV. CONCLUSION

This paper proposed a total variation regularized low-rank

tensor approximation method for color image denoising task.

The proposed method fully integrates the global and local

intrinsic characteristics of the underlying clean color image.

Experimental results for impulse and Gaussian noise removal

have shown that our proposed method can achieve better

performance than several advanced approaches.
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